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Abstract

Poor mental health triggers serious labor market penalties and is a growing cause

for concern among health professionals and economists. Using restricted data on

approximately 14,000 survey respondents combined with spatially detailed national

noise maps, we estimate that road noise is associated with sleep deprivation and has a

statistically significant, causal effect on mental health, equivalent to a 12.7% increase

in the number of respondents experiencing mild symptoms. This translates to an

annual welfare loss as large as $12.8 billion for the US.

Keywords— Road noise; Air pollution; Mental health; Area and road ruggedness; Wind speed;

Wind direction; HINTS; DARTE; PM2.5

JEL codes: Q53, I12

2



1 Introduction

According to the 2021 National Survey on Drug Use and Health,1 approximately one-fifth of US

adults (57.8 million in 2021) experience mental illness, more than three times the number reported

in 2011 (15.2 million adults aged 18 years or older) (Peng et al., 2016). This is relatively high com-

pared to the incidence of mental illness in other developed countries. For example, 1 in 6 people in

England and Switzerland and 1 in 7 people in France are reported to suffer from mental illness

(Hämmig et al., 2009; Leray et al., 2011; McManus et al., 2016). The prevalence of any mental

illness, which is defined as a mental, behavioral, or emotional disorder, is more frequent among

females (27.2%) than males (18.1%); young adults aged 18-25 years old (33.7%) than adults aged

26-49 years old (28.1%) or aged 50 and older (15.0%); and multi-racial individuals (34.9%) than

individuals identifying with a single race or ethnic group. Furthermore, 14.1 million individuals

(or 5.5% of US adults in 2021) are reported to suffer from serious mental illness that results in

serious functional impairment interfering with or limiting one or more major life activities. The

high and rising incidence of mental illness in the US is an increasing cause for concern since it

harms educational outcomes for children and brings large productivity and earning penalties for

adults (Cornaglia et al., 2015; Biasi et al., 2021), which impacts social mobility (Goodman et al.,

2011) and imposes a multi-billion dollar burden on the economy every year (Rice and Miller, 1998).

The medical literature has identified a multitude of factors that are associated with poor mental

health outcomes, including genetic markers and social determinants (e.g. economic opportunities,

living conditions, or other nonmedical factors) (Gatt et al., 2015; Alegrı́a et al., 2018). A common

thread among these factors is that they trigger the human stress response system. The economics

literature has further identified links between demographic, education, unemployment, retirement,

and migration effects and mental health (Bartel and Taubman, 1986; Kennedy and McDonald, 2006;

Dave et al., 2008; Farré et al., 2018; Jiang et al., 2020; Picchio and Ours, 2020). Environmental

factors, such as chemical air pollution, are also known to trigger the human stress response system

and are associated with degraded physical and mental health, poorer academic performance, more

1https://www.nimh.nih.gov/health/statistics/mental-illness
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serious dementia, and even higher suicide rates (Zhang et al., 2017; Dzhambov et al., 2018; Ao et al.,

2021; Gillingham and Huang, 2021; Heissel et al., 2022; Persico and Marcotte, 2022; Balakrishnan

and Tsaneva, 2023; Bishop et al., 2023; Xie et al., 2023).

Non-chemical environmental triggers are also known to affect mental health. For example, expo-

sure to excessive noise can lead to symptoms of anxiety, nervousness, and mental fatigue (Argys

et al., 2020) which induces cognitive impairment in children and interferes with sleep (Svingos

et al., 2018).2 The link between ambient noise and mental health is increasingly recognized as a

critical public health concern. Chronic exposure to environmental noise (e.g. traffic noise) is associ-

ated with heightened risks of depression, anxiety, and behavioral disorders, as well as cognitive

impairment and emotional distress (Basner et al., 2014; Clark and Paunovic, 2018; Hahad et al.,

2024). Mechanistically, noise-induced neuroinflammation, oxidative stress, and circadian rhythm

disruptions directly impact the brain, while systemic effects, such as immune dysregulation and

feedback from organ damage, further exacerbate mental health risks (Hahad et al., 2024). These

findings align with prior research showing that noise exposure elevates stress hormones, disrupts

sleep, and disproportionately affects vulnerable groups, including children and socioeconomically

disadvantaged populations (Stansfeld and Clark, 2015; Beutel et al., 2016). Collectively, these

studies underscore the need for integrated noise mitigation strategies in urban planning and public

health policy to address its pervasive mental health impacts.3

With the singularly ubiquitous network of roadways in the United States, we focus on the mental

health effects of roadway noise on a random sample of individuals surveyed by the National Cancer

Institute (NCI). At approximately 3 million kilometers, the US has the largest road network in

2In addition, the likelihood of cardiovascular disease, tinnitus, and stroke also increases with greater
exposure to noise pollution (Münzel et al., 2014). Hammer et al. (2014) estimate that 104 million individuals
in the US are exposed to a continuous average noise level above 70 dB which may increase their risk of
noise-induced hearing loss.

3Noise pollution, defined as unwanted or excessive sound, is regulated in the United States under the
Clean Air Act-Title IV, the Noise Control Act (NCA) of 1972 and the Quiet Communities Act (QCA) of 1978.
However, due to a lack of federal funding, the Office of Noise Abatement and Control was closed in 1982
and the primary responsibility for regulating noise pollution was shifted to state and local governments.
While the NCA and QCA remain in effect they are unfunded (https://www.epa.gov/history/epa-history-
noise-and-noise-control-act) and the EPA was sued in June 2023 for failing to regulate noise pollution (see
InsideEPA.com).
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the world, nearly double that of China (1.7 million km) and three times that of India (1 million

km), the countries with the second and third largest road networks, respectively. Compared to

the European Union, which has 0.14 million km of motorways, the length of motorways in the

US is nearly 21 times higher. It is estimated that more than 11 million Americans live within 500

feet of a major US highway that has an average annual daily traffic of at least 125,000 vehicles per

day. The traffic on these highways jointly contributes to local noise pollution and traffic related air

pollution. We determine if ambient road noise is a contributing factor to mental health problems

in the US, isolating the effect of roadway noise from traffic related air pollution.

Lan et al. (2020) support the hypothesis of an association between traffic noise and more severe

anxiety through a systematic literature review and meta-analysis, but they suggest that more

high-quality studies are needed to confirm the association and recommend an investigation of

the mechanisms behind that association. Heissel et al. (2022) find traffic pollution leads to worse

academic performance, but the study conflates the effects of noise and air pollution using schools

located “upwind/downwind” of highways for identification. To the best of our knowledge, the only

studies in the economics literature that directly link noise pollution to human health are Argys

et al. (2020) and Hener (2022). They find that mothers who are exposed to more aviation noise

are more likely to have babies with low birth weight and an increase in ambient noise contributes

to more violent crime activities, respectively. Notably, Dean (forthcoming) finds noise reduces

workers’ productivity in an experiment setting in Kenya. However, none of the aforementioned

studies establish a causal link between roadway noise pollution and human mental health.

We utilize novel data that measure ambient roadway noise at the residences of approximately

14,000 individuals between 2014 and 2020. A unique feature of our data is that we can link

individual mental health outcomes to highway noise pollution through relatively precise residen-

tial addresses. Under a data use agreement, we access the restricted version of the NCI’s Health

Information National Trend Survey (HINTS) which includes detailed information on individual

respondents’ mental health status, demographic and physical characteristics, and the 9-digit zip

code for their residence.
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We obtain annual noise data from the Department of Transportation’s National Transportation

Noise Maps for 2016, 2018 and 2020, focusing on road noise. These data are available on a 30-meter

grid which allows us to measure annual transportation-related ambient noise relatively precisely.

To isolate the effect of roadway noise from that of concomitant, traffic-related air pollution, we also

use high-resolution satellite-based annual PM2.5 concentrations from Shen et al. (2024), satellite

data measuring annual traffic-generated CO2 emissions from the National Aeronautics and Space

Administration (NASA), and weather information from the National Centers for Environmental

Information as additional environmental control variables.

Our key outcome variable is a summary mental health index for each respondent in the HINTS

survey. The index ranges from 0 to 12 with a larger number indicating worse mental health. While

nearly half the respondents don’t report any mental health issues in the two weeks immediately

preceding the survey (an index value of zero), nearly 25% report experiencing symptoms of anxiety

or depression on some days (an index value between 1 and 4). Since our sample includes respon-

dents from multiple waves of the HINTS survey, we standardize this index by year to facilitate

comparison across survey years.4 Our key independent variable is local road noise at the 9-digit zip

code level, which measures ambient noise at a “several households” or “street” level. We control

for individual demographic information like gender, race, education, and income. Based on the

mental health literature, we also include detailed controls for individual physical health and local

environmental conditions such as cloud cover and days with extreme temperature.

We then conduct the first national-level, quasi-experimental study to investigate the causal effect

of roadway noise pollution on adulthood mental health. The most challenging part of this study is

that roadway noise pollution is not randomly assigned, since respondents may sort themselves to

live in areas with different levels of ambient roadway noise and associated air pollution based on

4This was recommended by NCI staff when reviewing our application for access to the restricted HINTS
data which included a description of our proposed study and research design (Richard Moser, personal
communication, September 21st, 2022). In the online appendix Table A.10, we also present estimates using
the raw (unstandardized) index values.
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their socioeconomic status. We overcome the challenge by exploiting variations in local topography,

annual average temperature, and annual wind speed and direction to extract exogenous variation

in annual ambient roadway noise and the associated traffic-generated air pollution.

The identifying assumption for our instrumental variable approach is that topographic variation,

wind conditions, and annual average temperature only affect respondents’ mental health through

the channel of ambient roadway noise and air pollution.5 We argue that the variation in local

topography and the number of days with different prevailing wind directions generate different

ambient roadway noise and traffic-related air pollution for respondents given that the distribution

of highways surrounding respondents is not uniform. In other words, some areas usually have

heavier traffic than other areas and differences in local topography, wind speeds, and wind direction

generate exogenous variation in ambient noise and air pollution for the respondents in our sample.

Furthermore, air is less dense at higher temperatures which increases the speed at which sound

waves travel through it. This means that ambient noise pollution will be reinforced under higher

temperatures, ceteris paribus. We rely on this mechanism and use annual average temperature to

extract the exogenous change in annual ambient noise as well. We note that Mullins and White

(2019) investigate the causal effect of temperature on mental health. However, their findings

suggest the strongest impacts occur only at the most extreme temperature bins for emergency de-

partment visits and suicide rates, which are very serious mental health outcomes. They do not find

significant effects of temperature on self-reported mental health during the “last 30 days” (similar

to our outcome variable). Thus, we control for the number of days with extreme temperatures

during each survey period to capture the direct effect on mental health, but also use annual average

temperature (which should not have a direct effect on mental health) as one of our instruments to

address the endogeneity of ambient noise.

We estimate that the mental health of an average respondent worsens by 0.0026 standard deviations

5The literature has documented an association between wind direction and air pollution using mainly
within area temporal variation (see, for example, Deryugina et al., 2019; Heissel et al., 2022). In the absence
of high frequency information on ambient noise, combined with the pooled format of our mental health
data, we rely on cross-sectional variation.
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when ambient road noise increases by 1 dB (1.96% relative to the mean noise level). The effect

is equivalent to 18 out of 2528 respondents in a typical survey year (i.e. year 2018) with little

mental health problems reporting mild mental health symptoms instead. This is equivalent to a

12.7% increase in the number of respondents experiencing mild mental health symptoms. These

results are robust and statistically significant under various model specifications and translate

to an annual welfare loss as high as $12.8 billion due to lost earnings in the labor market. It is

reassuring that we do not find any relationship between ambient roadway noise and mental health

for a sample of hearing-impaired respondents.

We also address the potential mechanism through which ambient roadway noise may affect mental

health. Using county-level data we find that road noise has a significant negative association with

respondents’ sleep duration, reducing it by around 25 minutes/week when average road noise in

the county increases by 10 dB.

The adverse mental health effects of roadway noise identified by our analysis imply huge welfare

costs through lost earnings and workplace absenteeism. As the US makes substantial investments

in updating its transportation and housing infrastructure, our results point to the need for con-

comitant investments in roadway noise abatement strategies. This is underscored by the June 2023

legal action by Quiet Communities, Inc., a citizen action group, in which the EPA has been cited

for failure to act upon the Noise Control Act.

The rest of the paper is organized as follows: Section II describes our data. Section III illustrates

our empirical strategy. We report our main results in Section IV and assess the robustness of these

results in Section V. Section VI addresses the potential mechanism through which noise affects

mental health. Section VII concludes.
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2 Data

We exploit data that measure annual ambient noise from roadways at the residential location of

approximately 14,000 individuals in the continental US over 5 years (2014, 2017-2020). A unique

feature of our data is that we can link individual mental health outcomes to ambient roadway

noise through relatively precise residential addresses. Under a data use agreement, we access

the restricted version of the NCI’s Health Information National Trend Survey (HINTS) which

includes detailed information on individual respondents’ mental and physical health conditions,

demographic characteristics, and the 9-digit zip code area for their residence. HINTS collects

nationally representative data to evaluate the American public knowledge of, attitudes toward,

and use of cancer- and health-related information.6 It is suited to our analysis since it provides

both physical and mental health information for each respondent along with relatively precise

residential location, and the information is gathered without reference to ambient noise levels.

Our key outcome variable is a summary mental health index for each HINTS respondent. This

summary index is based on the answers to four separate mental health-related questions: over

the past 2 weeks, how often have you been bothered by any of the following problems? 1. Little

interest or pleasure in doing things; 2. Feeling down, depressed or hopeless; 3. Feeling nervous,

anxious, or on edge; 4. Not being able to stop or control worrying. The index ranges from 0 to 12

with a larger number indicating worse mental health.7 While nearly half the respondents don’t

report any mental health issues in the two weeks immediately preceding the survey (an index value

of zero), nearly 25% report experiencing symptoms of anxiety or depression on some days (an

index value between 1 and 4). Since our sample includes respondents from multiple waves of the

HINTS survey, and following the recommendation from the NCI (Richard Moser, personal commu-

6HINTS uses survey weights to allow researchers to generalize their analysis to the national US population.
The first step to create these weights is an adjustment to reflect the selection probabilities. To compensate
for non-response and coverage error, the selection weights are calibrated using data from the American
Community Survey conducted by the US Census Bureau. For more details about the sampling and weighting
process, see https://hints.cancer.gov/about-hints/frequently-asked-questions.aspx.

7For each mental health-related question, the answers “not at all”; “several days”; “more than half the
days”; “nearly every day” are assigned to values from 0 to 3, respectively. For example, respondents who
report having all four mental health issues nearly every day will get an index of 3×4 = 12, indicating the
worst case of mental health. If a respondent reports “several days” for one of the questions, and “not at all”
for all the other questions, the corresponding index value will be 1+0+0+0=1.
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nication, September 21st, 2022), we standardized this index by year to account for systemic trends

across the years and pooled a cross-sectional data set that facilitates comparison across survey years.

One of the most valuable characteristics of the restricted version of HINTS is that it offers geo-

graphic and detailed demographic and health information for each respondent. The geographic

information provides residential location including rural/urban designation, county FIPS code,

and 9-digit zip code. We use the 9-digit zip code to locate the respondents on the DoT’s National

Transportation noise maps. Zip code information is unavailable in the first three waves of the

HINTS survey (2011-2013) and our analysis is restricted to the respondents from the next five

waves: 2014 and 2017-2020. But, in Section 6, we use the respondents from the first three waves

as a separate sample to disentangle the mechanism through which noise pollution affects mental

health.

The DoT’s National Transportation Noise Maps provide spatially gridded nationwide annual noise

data for 2016, 2018 and 2020 due to aviation, highway, and rail transportation. Although rail noise

information is available in the 2018 and 2020 waves, it is not included in the 2016 wave. Also, the

areas exposed to rail noise in the US are relatively limited compared with the widespread road

noise exposure. A vast majority of the respondents in our sample are exposed to relatively low

and undetectable levels of aviation noise as well. Thus, we only focus on road noise in this study.

As an example of the information provided by the noise maps, Figure 1 shows the ambient noise

surrounding our institution. Appendix Figure A.1 shows the 2020 noise map for the contiguous US.

The road noise data used for the National Transportation Noise Map are modeled using Average

Annual Daily Traffic (AADT) values, along with vehicle types and speeds, calculated through

the Federal Highway Administration’s Traffic Noise Model (TNM) algorithms. AADT values are

sourced from the Highway Performance Monitoring System (HPMS), which also details road types.

Speed data is either taken from HPMS, if available, or assigned based on road and area types (e.g.,

urban or rural). If speed data is missing, a default value of 35 mph is used. Vehicle categories

included in the noise modeling are automobiles, medium trucks, and heavy trucks, with average
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speed limits assigned to different road types. Road noise levels are determined using TNM’s

acoustic algorithms and calculated at receptor points located in a uniform grid every 98.4 feet,

positioned at 4.92 feet above ground level to simulate human exposure. The data also considers

ground effects and distance from noise sources.

Key assumptions in road noise modeling include using default weather conditions (68◦F and 50%

humidity), acoustically soft ground (which may under-predict noise levels for hard surfaces like

water or pavement), and average pavement types. The AADT values are assumed to be evenly

distributed over 24 hours. Shielding effects such as natural barriers, terrain, or buildings are not

included, which may lead to overestimated noise levels in densely populated areas. Additionally,

noise levels below 45 dB(A) are excluded from the results. The data used has some inherent uncer-

tainties, especially over longer distances due to factors like atmospheric conditions or variations in

terrain that are not fully accounted for in this simplified modeling.

Importantly for us, the noise data are available on a fine spatial grid of 30-meter square. Since

ambient noise is highly localized, we utilize the 9-digit zip code for each respondent’s street address,

which is a relatively precise indicator of location and may be interpreted as identifying the location

within a few houses or at the street level.8 We assume that each respondent resides at the centroid

of the zip-9 area and use data from GeoLytics, Inc. to identify the latitude and longitude of each

centroid. The zip-9 centroid geocodes are then used to locate the HINTS respondents on the DoT’s

national noise maps.

The average noise level of a busy highway is around 70 to 80 dB. However, noise does not move

through long distances (unlike, for example, some air pollutants), and audible noise decreases

non-linearly by 6 dB as the distance from the noise source is doubled (Zou, 2017). In other words,

78 dB ambient noise at 15 m from the noise source will be equivalent to 42 dB at a distance of

8A typical zip+4 (zip-9) code covers an area much smaller than a standard zip code. According to the US
Postal Service, a zip+4 code identifies a specific delivery route or location, often corresponding to a group
of 10-20 addresses on a single street, a small building, or a block-face in urban areas. In rural areas, the
coverage might be slightly larger but still remains much more precise than a 5-digit zip code, allowing for
highly localized environmental measurements.
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960 m.9 To estimate respondents’ ambient road noise, we create a circular buffer with a radius

of 1 km around each respondent’s 9-digit zip code centroid.10 Figure 2 depicts the zip-9 cen-

troids for a sample of hypothetical HINTS respondents near our institution. The blue circles are

the 1-km noise buffers and the white/black segments represent ambient road noise from road-

ways. Within a buffer, each 30 m2 pixel area has a unique value for ambient noise. We calculate a

respondent’s ambient noise as the average across all pixels in the buffer that have detectable noise.11

To isolate the effect of roadway noise from that of traffic-related air pollution, we exploit the

Database of Road Transportation Emissions (DARTE) from NASA. DARTE provides annual on-road

emissions based on roadway-level traffic data and state-specific emission factors for multiple

vehicle types, and covers the conterminous US for 1980-2017 at a high spatial resolution of 1km.

One limitation of DARTE is that it only provides estimates of on-road CO2 emissions, and lacks es-

timates of other traffic-related air pollutants. However, Liang et al. (2024) report that traffic-related

CO2 is correlated with other pollutants like SO2 and NOX and we use on-road CO2 emissions to

approximate traffic-related air pollution. Appendix Figure A.2 shows the 2017 CO2 emission map

for New York City and its surrounding areas; areas with more traffic-generated CO2 emissions

(cells with a deeper red color in the figure) tend to be fairly close to the highways. Similar to the

noise measurement, we calculate a respondent’s surrounding on-road air pollutants (approximated

by CO2 emissions) as the average across all pixels in the 1km buffer that have detectable CO2

emissions. To further address the concern that traffic-generated CO2 emissions cannot fully capture

respondents’ surrounding traffic-related air pollution, we estimate PM2.5 concentrations in the

1 km buffer surrounding their place of residence using data from Shen et al. (2024). These data

combine satellite aerosol optical depth data, a chemical transport model, and ground monitor data,

and offer a very precise and high-resolution (i.e. approximately 1 km × 1 km) estimate of local air

pollution (Kayastha et al., 2024).

9The noise data reported by the DoT account for this non-linearity in the propagation of noise.
10Anderson (2020) sets the buffer with a radius of 500 m in his study, but the spatial resolution of his

study (census tract) is different from ours and mainly focuses on the effect of highway-related air pollution.
The 1 km buffer suits our study well since it captures the decay of general traffic noise (e.g. 78 dB) to a
non-detectable level (e.g. 42 dB) at the margin of the buffer size (e.g. 960m).

11We consider an alternative way of measuring the ambient noise at the centroid of each zip-9 in section 5
under the robustness checks.
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Mullins and White (2019) show that higher temperatures (relative to the mean values) are as-

sociated with poorer mental health outcomes. Thus, we account for temperature anomalies by

including the number of days within a year with extreme temperatures (i.e. above 85◦F and below

32◦F) at the 5-digit zip code level provided by the National Oceanic and Atmospheric Adminis-

tration (NOAA) through the National Centers for Environmental Information (NCEI). We also

get the 5-digit zip code level average daily temperature during the survey year for each HINTS wave.

We obtain daily information on other environmental factors from Visual Crossing, which offers

rich historical data on weather conditions like temperature, precipitation, wind speed, and wind

direction. The weather data originates from individual NOAA weather stations; Visual Crossing

organizes the data in a way that allows us to exploit it directly at the 5-digit zip code level.

We also innovatively use Area and Road Ruggedness Scales data from the US Department of

Agriculture (USDA). These data provide measures of topographic variation, or “ruggedness”, for

census tracts across all 50 states and Washington, DC. These data are especially valuable to our

study since they have nationwide coverage and are the first to provide a road-only measure of

ruggedness that helps us link local topographic variation with ambient road noise.

Our key independent variable is local road noise pollution at the 9-digit zip code level, which

measures noise at a “several households” or “street” level. We control for individual demographic

characteristics like gender, race, education, and income. Based on the mental health literature

as aforementioned, we also include detailed controls for individual physical health conditions,

housing ownership status, marital status, and access to health care.

There are more than 19,000 respondents with 9-digit zip code information across 5 HINTS survey

years. However, some demographic questions are not asked in all the waves (e.g. employment

status is not asked in the 2019 wave), and we lose some individuals due to missing information.

Our final sample size is a pooled cross-section of around 14,000 individuals across all the survey
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years. 99.8% (14,621 out of 14,643) of the respondents are the single observation in their 9-digit zip

code areas, covering 2070 counties (610 respondents are the single observation in their counties)

and all 48 contiguous US states plus the District of Columbia. On average, there are 7 respondents

in each county.

3 Identification Strategy

3.1 Basic Model: OLS

To obtain a basic description of the association between mental health and the various correlates

that have been identified from the literature, we begin with a simple OLS regression. We address

the potential endogeneity issues between mental health and our key regressors (ambient road

noise/air pollution) through an instrumental variable approach in the following sub-section.

The reduced-form model describing the relationship between human mental health and ambient

road noise is as follows:

Sizt = β0 +α1Roadnoise1kmzt +α2CO2Emission1kmzt +α3PM2.51kmzt

+β1Femaleizt + β2Marriedizt + β3Ageizt + β4Age
2
izt

+β5Educizt + β6Hhnumizt +β7Raceizt +β8Incomeizt

+λ1DocV isizt +λ2Cancerizt +λ3CancerFamizt

+λ4BMIizt +λ5Diabetesizt +λ6Hypertensionizt +λ7Exerciseizt +λ8Ownf raczt

+γ1ExtremeT emzt +γ2Cloudcoverzt +γ3Solarenergyzt +θc + ηt + ϵizt

(1)

where Sizt represents the standardized mental health summary index (PHQ-4) for an individual

respondent i from zip code area z (5 or 9 digit) in year t. We standardize the PHQ-4 measure for

each respondent by subtracting the mean value of PHQ-4 for that survey year and dividing it by

the corresponding standard deviation so that each respondent is compared with the “general” re-

spondent from the same survey year. By standardizing the PHQ-4 measure, we address the concern

that our outcome of interest may have changed systematically over time. A higher standardized
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PHQ-4 index indicates a worse mental health for the respondent. θc and ηt represent the county

and year-of-survey fixed effects, respectively.

Female and Married are dummy variables which equal to 1 if an individual respondent i from

zip-code area z in year t is a female or married, respectively. β3,β4 and β5 (a vector for different

educational levels) capture the association between mental health and the respondent’s age and

highest completed education.12 Raceizt is a vector of indicator variables for non-Hispanic black,

Hispanic, and non-Hispanic other race, with non-Hispanic white as the base group. Hhnumizt

counts the total number of people living in the respondent’s household. Some studies show that

both early life circumstances and childhood physical and mental health, which could be related

to the number of children living in the household, have durable effects on adulthood outcomes

including adulthood mental health and labor market outcomes (Goodman et al., 2011; Adhvaryu

et al., 2019).

There is extensive literature documenting the direct and indirect association between income and

mental health outcomes for adolescents, adults, and the elderly (Baird et al., 2013, Lin et al., 2013,

Watson and Osberg, 2018). We include the annual personal income of individual respondent i from

zip code area z in year t from HINTS data. Annual income is potentially an endogenous variable

since it could be determined simultaneously with or be related to other unobservables that also

affect mental health. However, the specific question in HINTS regarding income is: “What is your

combined annual income, meaning the total pre-tax income from all sources earned in the past

year?” while the specific question regarding mental health is: “Over the past 2 weeks, how often

have you been bothered by...”. Thus, we believe that this concern is reasonably diluted given the

(i) long time interval between the two variables, and (ii) the disparate time span over which they

are measured. We also include as control variables the fraction of residents owning a house at the

block group level.13 Joshi (2016) finds individuals tend to report worse mental health when local

12The highest level of schooling is a categorical variable that includes “less than high school”; “high school
graduate”; “some college”; “college graduate or more”. The base group in our specification is “less than high
school”.

13We link respondents’ zip-5 information to the block groups by overlapping the zip-5 area centroids with
the block-group map from the Census Bureau. Block group level information is obtained from the 2018
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house prices decline, but this association is most significant for individuals who are least likely to

be homeowners. λ8 captures the association between home ownership and mental health.

It is well established that physical health also plays an important direct and indirect role in ex-

plaining mental health. See, for example, Kristiansen, 2021; Kesavayuth et al., 2022. Thus, we

include many variables related to each respondent’s physical health condition. “DocVis” counts the

number of times a respondent goes to see a doctor, nurse, or other health professional during the

past 12 months; “Cancer” and “CancerFam” indicate whether a respondent or their family members

ever had cancer, respectively. We also include Body Mass Index, and the occurrence of two common

diseases, diabetes and hypertension. Mikkelsen et al. (2017) find positive effects of exercise on

mood states such as anxiety, stress, and depression. So, we control for “Exercise” which counts how

many days a respondent does any physical activity or exercise of at least moderate intensity in a

typical week.14

We include several environmental factors that are known to contribute to mental health conditions.

ExtremeT emzt includes two controls for the number of days during the survey period with daily

maximum temperature below freezing or above 85◦F, respectively (Burton and Roach, 2022).15

Intraday weather conditions may also affect respondents’ mental health. Xu et al. (2020) find that

depression symptoms peak on cloudy days, so we include the average cloud cover fraction (%)

within a day across each survey period at the 5-digit zip code level. People’s moods may also be

affected by seasonality and Molin et al. (1996) argue that lack of light is a driving factor for the

development of winter depression. Therefore, we include the average solar energy during each

survey period, which indicates the total energy from the sun that builds up a day at the 5-digit zip

code level, as a correlate that is independent of cloud cover.16

American Community Survey.
14As in the case of household income, we believe that the concern regarding the potential endogeneity of

the physical health controls is diluted because of the disparate time span over which they are measured as
compared to the questions regarding mental health.

15The survey period is from August to November for 2014; from January to May for 2017, 2018, and 2019;
and from February to June for 2020.

16While most people may think that cloudier places will have less solar energy, the relationship is more
intricate. The relationship between cloud cover and solar energy depends on factors such as the type of
clouds, the time of day, the season, and the geographical location. Partially cloudy skies and the contribution
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CO2Emission1kmzt is the annual-average traffic-generated CO2 emissions within a 1 km radius

circular buffer anchored to the centroid of the 9-digit zip code for the respondent’s residence. We

use this to approximate local traffic-related air pollutants, along with PM2.51kmzt which records

the annual average PM2.5 concentrations within the same 1km buffer.17

Roadnoise1kmzt represents the annual-average ambient road noise in year t within a buffer of

1 km radius located at the centroid of the 9-digit zip code of each respondent’s street address.

One limitation of the DoT data is that they are not available annually. We assign 2016 noise data

to respondents from the 2014 HINTS wave, 2018 noise data to respondents from the 2017 and

2018 HINTS waves, and 2020 noise data to respondents from the 2019 and 2020 HINTS waves

as approximations. Local noise pollution is very strongly correlated over time (the correlation

coefficient exceeds 0.95),18 so we anticipate that this approximation has minimal measurement

error.

3.2 Instrumental Variable Approach

The biggest challenge in identifying the causal effect of noise pollution on mental health is that

roadway noise and traffic-related air pollution may not be randomly assigned due to residential

sorting based on respondents’ socioeconomic and demographic correlates. Although we do not

observe obvious patterns in our data, like people with higher incomes and education living in

areas with less ambient noise, the current literature on environmental justice has clear evidence to

show that less privileged people are disproportionately exposed to higher pollution (Banzhaf et al.,

2019). We innovatively utilize local topographic variation at the census tract level along with wind

speed, wind direction, and annual average temperature at the 5-digit zip code level to address this

of diffuse radiation mean that even cloudy areas can still experience significant solar energy.
17We also calculate both air pollutants within a 5 km radius circular buffer to capture air pollution within

a larger area as a robustness check.
18We locate each zip-9 centroid from the three waves of HINTS on the noise maps for the corresponding

three years. We then calculate the annual within-buffer average noise for every zip-9 centroid in our sample
and calculate the correlation across years. Note that our sample is a pooled cross-section with very limited
overlap in respondents’ 9-digit zip codes across survey years. Hence the temporal correlation in roadway
noise is represented as cross-sectional variation in our sample.
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potential endogeneity between ambient noise or air pollution and mental health. We describe each

of these instruments below, followed by the estimating equations in our two-stage regression model.

Since road noise is generated primarily through the friction between the vehicle tires and the

surface of the road, slower-moving vehicles generate lower noise. Combined with the fact that

drivers drive relatively slowly in areas with greater topographic variation, we anticipate that road

noise is generally lower in such areas. The USDA recently released the Area and Road Ruggedness

Scales which includes the Area Terrain Ruggedness Index and the Road Ruggedness Index, both at

the census tract level.19 The ruggedness index is the sum change in elevation between each grid

cell and its neighboring cells, with lower values indicating smaller changes in elevation and higher

values indicating larger changes. While the Area Ruggedness Index is computed using the change

in elevation in all 8 neighboring cells, the Road Ruggedness Index is based only on the neighboring

cells through which a road passes (see Figure 3). We expect a negative correlation between the

Area Ruggedness Index and road noise. However, conditional on the Area Ruggedness Index, we

anticipate that road noise is higher in areas with a higher Road Ruggedness Index because of the

more frequent deceleration and acceleration of vehicles. We also anticipate that topography affects

local air pollution since different driving behaviors also impact the fuel efficiency of vehicles, which

contributes to variation in traffic-generated air pollution.

Wind direction and wind speed have been used in the recent literature as instrumental variables

given their naturally exogenous characteristics. However, most of the current research using

wind-related instrumental variables focuses on the endogeneity of air pollution (Deryugina et al.,

2019; Burton and Roach, 2022; Persico and Marcotte, 2022). A handful of recent studies have

linked wind-related variables to noise exposure. Hener (2022) exploits the exogenous change in

daily wind speed and wind direction to investigate the effect of aviation noise on local crime rates.

Zou (2017) establishes the link between wind farms and suicide rates by investigating how wind

direction changes exposure to low-frequency noise.

19https://www.ers.usda.gov/data-products/area-and-road-ruggedness-scales/
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Noise travels through the air as a sound wave. Wind can accelerate or slow down the propagation of

sound waves. When the wind blows in the same direction as the noise source, like the wind coming

from the direction of a highway, the sound waves will bend and be refracted to the ground, which

increases ambient noise. However, when the wind blows in the opposite direction to the noise

source, the sound waves will be refracted upwards and the propagation of noise will be diluted (Nijs

and Wapenaar, 1990). Wind speed also impacts noise propagation; noise travels a further distance

with a higher wind speed. However, high wind, captured in our data through maximum wind

speed, can counteract ambient noise by creating noise from air friction, canceling road noise. Wind

also blows local air pollutants to other areas, depending on wind speed and direction. Thus, we ex-

ploit the daily variation in wind conditions to address the endogeneity of ambient noise and traffic

related air pollution. To account for local variation in the effect of wind direction on noise and air

pollution propagation, we interact the wind direction variables with county fixed effects. That is, we

allow the effect of an east wind to differ for a county in NY relative to a county in CA, for example.20

Furthermore, roadway noise and, likewise, traffic-related air pollution, is not a point source pollu-

tant (unlike, for example, toxic emissions from a TRI facility). Rather we think of them as being

generated along “line segments” (for example, highways). Thus, we do not emphasize the idea

of respondents being upwind or downwind of these pollution sources since a respondent who

lives downwind from one roadway (or one section of a roadway) could also be living upwind

from another roadway (or section, thereof) given the same prevailing wind. Instead, we focus

on the number of days with the four prevailing wind directions. We argue that the variation in

the prevailing wind directions generates exogenous variation in ambient noise and traffic-related

air pollution exposure for respondents because highway distribution surrounding respondents

is unlikely to be uniform. That is, some areas usually have heavier traffic (and therefore higher

roadway noise and air pollution) than other areas, and we utilize the fact that the variation in wind

speed and wind direction propagates pollution from high-traffic areas to different respondents

based on changes in daily wind conditions.

20We also interact wind directions with States or census divisions as a robustness check.
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The propagation of noise is not only affected by wind but also by ambient temperature. The density

of air is lower at higher temperatures which refracts noise away from the ground and reduces

ambient noise. Although Mullins and White (2019) investigate the causal effect of temperature

on mental health, their findings suggest the strongest impacts occur only at the most extreme

temperature bins for emergency department visits and suicide rates, which are very serious mental

health outcomes. They do not find significant effects of temperature on self-reported mental health

during the “last 30 days” (similar to our outcome variable). Thus, we control for the number of days

during each survey period with extreme temperatures to capture the direct effect on mental health,

but we also use the average daily temperature during each survey year (which should not have a

direct effect on mental health) to address the impact of associated variation in the propagation of

noise.21

The first-stage equation for our baseline two-stage least squares regression model is:

Noise(CO2Emission/PM2.5)izt = α0 +α1 ·RoadRIz +α2 ·AreaRIz+

β1 ·windspeedzt + β2 ·maxwindspeedzt +
∑
c∈C

2∑
k=0

γc ·Winddir90k
zt

+δ · averagetempzt +X
′

iztσ +W
′
ztη +θc + ηt + ϵizt

(2)

The dependent variable Noise(CO2Emission/PM2.5)izt represents either annual ambient road noise

or annual average air pollution within a 1 km buffer of each individual i located in 9-digit zip code

area z in year t. The excluded instruments in Eq.(2) are the census tract level Area Ruggedness

Index (AreaRIz) and Road Ruggedness Index (RoadRIz), annual average wind speed and maximum

wind speed, and the annual average temperature for each HINTS survey wave.22 Winddir90k
zt ,

which represents the number of days in each survey year that the prevailing wind falls in the

90-degree interval [90k,90k + 90) (split into four bins, with interval [270,360) as the base group),

is interacted with county fixed effects (γc).23 The included instruments (control variables) at the

21The survey period is from August to November for 2014; from January to May for 2017, 2018, and 2019;
and from February to June for 2020.

22For 77% of the respondents in our sample, there is a one-to-one mapping from zip codes to census tracts.
Hence, for notational ease, we suppress the census tract subscripts of the ruggedness indices.

23We interact wind directions with county fixed effects rather than 5- or 9-digit zip code fixed effects for
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individual or zip code area level are represented by the vectors X
′

izt and W
′
zt, respectively, and are

the same as in Eq.(1).

We then utilize the predicted ambient noise and air pollution from Eq.(2) to estimate the causal

effect of noise and air pollution on mental health using the following second-stage regression:

Stdphq4izt = α + β1 · ̂Roadnoise1kmizt + β2 · ̂CO2Emission1kmizt + β3 · ̂PM2.51kmizt

+X
′

iztσ +W
′
ztη +θc + ηt + ϵizt

(3)

̂Roadnoise1kmizt, ̂CO2Emission1kmizt, and ̂PM2.51kmizt are the ambient road noise, traffic-generated

CO2 emissions, and local PM2.5 concentrations predicted by the excluded instruments from Eq.(2).

All the other control variables are the same in Eq.(1).

4 Main Results

4.1 Summary Statistics

With the development of modern transportation and urbanization, most people live in areas with

convenient commuter infrastructure. Not surprisingly, 95% of the respondents in our sample

live within 1 km of a primary or secondary road and are exposed to road noise. Figure 4 shows

the distribution of ambient road noise within a 1 km buffer for our sample respondents.24 Most

respondents experience ambient road noise between 50 and 60 dB and only a very small fraction of

respondents reside with undetectable ambient road noise; the average annual ambient road noise

within a 1 km buffer of the sample respondents’ 9-digit zip code centroids is 50.96 dB (53.81 dB

for those with detectable road noise). The lowest detectable noise value reported in DoT data is 45

several reasons. First, county fixed effects capture a broader regional variation that aligns with the scale
of wind directionality and its potential environmental and health impacts, ensuring sufficient variation
within the data for robust estimation. Interacting with more granular fixed effects, such as 5- or 9-digit
zip codes, could lead to overfitting and a significant loss of statistical power, as these finer spatial units
may absorb much of the variation in the wind direction variable. Additionally, data limitations in certain
zip code regions (e.g., sparsely populated) further constrain the feasibility of such interactions, whereas
county-level interactions maintain a balance between granularity and generalizability.

24DoT data do not detect/record ambient noise below 45 dB, which explains the large gap between 0 dB
and 45 dB in the figure.
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dB, and the minimum average ambient road noise recorded is 45.1 dB within the 1 km buffer. The

maximum average ambient road noise is 60.83 dB, which is well above the 55 dB cutoff set by the

EPA for human health and welfare protection (EPA, 1974).

As for the outcome variable of interest, nearly half of the respondents in our sample have a value of 0

for the PHQ-4 index, which means they do not report any mental health problems. About a quarter

of respondents report their index values between 1 and 4, which means they experience symptoms

of anxiety or depression on some days in the two weeks immediately preceding the survey time.

In general, older respondents in our sample report better mental health: the average age for

respondents who report a value of 0 is 58.46 while the average age for the respondents with the

worst mental health (a value of 12) is 52.73. This is consistent with the national averages reported

in the 2021 National Survey on Drug Use and Health.25 People with diabetes or hypertension as

well as those with a higher BMI are more likely to have poorer mental health.26 Table 1 summarizes

our data separated into demographic, health, and environmental variables, respectively.

4.2 OLS Results

The results from the basic OLS model fit well with our expectations and intuition. Table 2 column

1 shows that road noise within a 1 km buffer around respondents’ 9-digit zip code centroids is

negatively associated with mental health (recall, a higher value for the PHQ-4 index indicates worse

mental health), and that the mental health of respondents worsens by 0.0016 standard deviations

when ambient road noise increases by 1 dB.

The first column of Table A.2 reports all the coefficients from the basic OLS model. Better education,

higher income, and marriage are associated with improved mental health, which aligns with the

evidence from the literature (Bartel and Taubman, 1986; Jiang et al., 2020). Like Blanchflower and

25https://www.nimh.nih.gov/health/statistics/mental-illness
26The fraction of people with cancer (15%) or whose family had cancer (56%) might appear to be quite

high. Note that the question HINTS asks respondents regarding cancer is “Have you ever been diagnosed as
having cancer?” This means that cancer survivors and those currently under treatment for cancer answer
“Yes” to this question. According to the National Cancer Institute, men have a one in two chance of being
diagnosed with cancer while women have a one in three chance.
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Bryson (2022), we find that women are generally unhappier than men. Mental health also improves

nonlinearly with age, and the results are significant at a 5% significance level. In addition, we find

that respondents who live in a block group where a larger fraction of people own their current

residence have better mental health.

As for differences by population sub-group, we find that Black and Hispanic respondents have sig-

nificantly better mental health compared with the base group of White respondents. Respondents

whose family members ever had cancer have worse mental health, and the result is significant at a

1% level. Interestingly, whether a respondent has ever had cancer herself seems immaterial to her

mental health.

The current literature shows a strong association between physical health and mental health (Good-

man et al., 2011; Kristiansen, 2021; Kesavayuth et al., 2022). We find that the respondents who visit

doctors more frequently, have larger BMI, and ever had diabetes or hypertension have significantly

worse mental health. We also find a positive relationship between exercise and respondents’ mental

health, which fits with the evidence from the literature (Windle et al., 2010).

We report the association of several environmental factors with mental health. First, we do not find

significant associations between local traffic-related air pollution and mental health in our sample.

Although there is some evidence in the literature on the negative effects of air pollution on mental

health, most of these studies focus on China (Zhang et al., 2017; Chen et al., 2018; Gu et al., 2020;

Yang et al., 2021; Xie et al., 2023). China has generally much worse air quality (averaged at 29µg/m3

in 2022) than the US (averaged at 7.8µg/m3 in 2022), and the pronounced effects found in China

may not apply to the US. Persico and Marcotte (2022) focus on the US and find that air pollution

is positively associated with the suicide rate, but the evidence is at the aggregated (county) level.

To the best of our knowledge, there is no evidence in the literature indicating traffic-related air

pollution directly affects individual-level mental health for the general population in the US.

Li et al. (2020) and Mullins and White (2019) report a negative association between temperature
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and mental health. We find similar results in our sample– respondents’ mental health is positively

associated with the number of days when the maximum daily temperature is below freezing,

conditional on other environmental factors. Meanwhile, the number of days with a maximum

daily temperature above 85◦F is negatively associated with mental health and the association is

statistically significant at the 10% level. We also find a higher fraction of cloud cover predicts

worse mental health and the result is significant at a 5% significance level. But, we do not find any

significant association between solar energy and mental health.

4.3 IV Results

To assess the prevalence of sorting behavior with respect to ambient noise, we plot the coefficients

from the regression of ambient road noise on each confounding factor (income/education) sepa-

rately in Appendix Figure A.3. While there is some evidence suggesting people with higher income

levels (> 100K) tend to live in areas with less ambient road noise, we do not observe a similar

pattern with respect to education.

Although we do not find unconditional evidence of sorting behavior among the respondents in

our sample, we still allow for the possibility that ambient noise pollution is not random given the

evidence from the environmental justice literature on the greater pollution exposure experienced

by marginalized communities (Banzhaf et al., 2019). We utilize an instrumental variables approach

in which we assume ambient road noise (as well as the concomitant traffic-related air pollution)

is endogenous to mental health, using local topography, wind speed, wind direction, and annual

average temperature to extract the exogenous variation in ambient noise pollution. To assess

whether our instruments are randomly assigned or confounded with demographic variables, we

estimate separate sets of regressions for each instrument (except for wind direction × county fixed

effects) on only one potentially confounded variable at a time and plot the estimated coefficients

and their standard errors for each IV separately. For instance, we estimate a regression of wind

speed on all income/education level indicators and plot the coefficients in Figure A.4. In general,

we find all the 95% confidence intervals overlap with the 0 value line, indicating that our IVs

are mean independent of income and education levels. Figures A.5 to A.10 show the plots for
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other instruments. The only exceptions are the two ruggedness indices where we find respon-

dents in the highest income brackets tend to reside in areas with higher values for these two indices.

The first-stage regressions are shown in Appendix Table A.3. Wind speed shows a strong positive

correlation with roadway noise, while exhibiting a negative correlation with PM2.5 concentrations.

Annual average temperature is significantly associated with both road noise and air pollution

levels, as demonstrated in columns 1-3. Road and area ruggedness indices are strongly correlated

with ambient road noise as well as traffic-related air pollutants, and the signs are consistent with

our expectations.27

Table 2, columns 2-4, report the IV estimates where we regard ambient road noise and the two

measures of traffic related air pollution as endogenous. The effect of ambient road noise within a

1 km buffer around respondents’ 9-digit zip code centroids on their mental health is estimated

to be larger in column 2 as compared to column 1, albeit less precisely estimated. The 2SLS

estimates suggest that the mental health of respondents worsens by 0.0026 standard deviations

when their ambient road noise increases by 1 dB, or that around 18 out of 2528 respondents

(in the survey year 2018) go from having “little” to “mild” depressive symptoms because of a 1

decibel increase in ambient road noise. This is equivalent to a 12.7% increase in the number of

respondents experiencing mild mental health symptoms.28 This is conditional on traffic-related

27We expect relatively small first stage F-values in our main specification given the large number of
county-interacted-wind-direction instruments. To address the concern about the validity of our instruments,
Appendix Table A.4 shows the first-stage results without wind-related instruments. Since we believe
wind speed-related instruments are only valid when combined with wind direction, we only keep the two
ruggedness indices and annual average temperature as our instruments. We find much larger F-statistics in
both specifications. The second-stage results using the three instruments are reported in Appendix Table
A.5, we still find significantly negative effects of ambient road noise on mental health albeit the magnitude
of the estimated coefficient is about 10 times larger than the coefficients reported in Table 2.

28First, we calculate the weighted average of the standardized mental health index for each year in our
sample. The weights are the fraction of respondents in the sample for each year. Then, for any specific
year, for example 2018, we manipulate the data lowering of respondents whose raw phq4 index equals
2 to and raise the number of respondents with an index value of 3, indicating the marginal change from
none to mild mental health problems based on HINTS’ data description (see https://hints.cancer.gov/view-
questions/question-detail.aspx?PK Cycle=13&qid=1182), and calculate the new corresponding weighted
average standardized mental health index. The difference between the original weighted average index and
the manipulated weighted average index equals 0.0026 (the coefficient on ambient road noise in our main
specification). The 12.7% increase in the number of respondents experiencing mild symptoms is calculated
as 18/142, see Appendix Table A.1 Panel B for mental health distribution of the survey year 2018.
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air pollution, which also has a negative effect on mental health albeit it is statistically significant

only when we measure emissions in the larger area of 5 km radius (see column 2 of Table 2, Panel

B). This is consistent with the evidence in the literature. Ventriglio et al. (2021) investigate the

association between major environmental pollutants and various mental health disorders, and they

find the evidence is inconclusive. Although some studies report a positive association between air

pollution and mental health (for example, Pun et al., 2017 and King et al., 2022), the complexity of

confounders and pollutant measurements prevent any conclusion on a causal relationship between

ambient air pollution and mental health.

Although our main specification (column 2 of Table 2) uses wind direction×county fixed effects as

instruments to allow for the most flexible wind instruments across respondents’ geographic areas,

in columns 3 and 4 of Table 2 we also consider alternative specifications in which we interact wind

direction with state or census division dummies. The coefficient on road noise remains negative

and significant. While this specification is less flexible, the first stage regression results are stronger.

The coefficient on traffic-generated air pollution while negative is no longer statistically significant.

The association between most control variables and mental health is quite similar to the results

from the OLS model. For example, education, marriage, and income are associated with significant

improvements in mental health. Younger respondents and females tend to have significantly worse

mental health. Black and Hispanic respondents have significantly better mental health compared

to White respondents.

5 Robustness Checks

5.1 Measurement Error

In our baseline analysis, we estimate the ambient noise in the respondents’ residential location as

the average noise in all 30m pixels in the circle of 1 km radius from the centroid of the 9-digit zip

code area of their street address, conditional on noise being recorded in the pixel. Here, we utilize
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an alternative measurement in which we assume each respondent from HINTS lives exactly at their

zip-9 centroid, and we assign them the ambient noise from the DoT noise pixel that overlaps with

that centroid. One limitation of this measurement is that 81% of all respondents are associated

with 0 ambient noise since the centroids will not be assigned noise values unless they fall in a 30 m

pixel with noise recorded on the noise map.

Column 1 in Table 3 summarizes the 2SLS estimates using the point noise measurement (see

Appendix Table A.8 for the full specifications). The coefficient on road noise becomes negative, has

a much smaller magnitude compared with the baseline estimate obtained using the within-buffer

noise measurement, and is not statistically significant. Nor does traffic-generated CO2 emissions

have a statistically significant effect on mental health. The lack of statistical significance of these

coefficients is likely due to the fact that less than 20% of the respondents are assigned ambient

noise using the point noise approach, which contributes to a much smaller variation in the data.

5.2 Potentially Confounding Traffic Related Air Pollution

Although we use locally precise traffic-generated CO2 emissions and PM2.5 concentrations to

account for local air pollutants, we still worry that this approximation may not adequately cap-

ture traffic-related air pollution that is concomitant with noise pollution. So, in an alternative

specification, we attempt to disentangle the effect of concomitant air pollution from the effect

of noise pollution by exploiting variations in local clean energy usage. The EPA’s Green Vehicle

Guide notes that electric vehicles (EVs) produce no tailpipe emissions and the total emissions

produced by EVs are typically less than gasoline-powered vehicles. Likewise, other alternative

fuel vehicles, for example, those powered by biodiesel and E95 (95% ethanol blend), also produce

lower tailpipe emissions. Importantly for us, while EVs are far quieter than internal combustion

engine vehicles at low speeds, at higher speeds alternative fuel and gasoline-powered vehicles

are associated with the same roadway noise which is generated by drag due to wind resistance

and tire friction against the road surface. We generate an index indicating the local clean energy

demand/supply by exploiting the map of the Alternative Fueling Station Locator from the US
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Department of Energy.29 This map contains all the clean energy/alternative fueling stations in the

US (e.g. biodiesel, CNG, electric, ethanol, etc.), which we use to approximate the local usage of

clean energy for each respondent in our sample.

To generate the local clean energy index, we first create a 5 km buffer for each respondent to

approximate the range that people usually travel to fuel their vehicles. Second, within each 5

km buffer, we get the fraction of every census tract that has an intersection with the buffer and

calculate the area-weighted population density for each buffer based on US Census Data (2020).

Finally, we generate CSperwpd by using the count of all clean energy/alternative fueling stations

within each buffer divided by its weighted population density to approximate the local clean energy

usage for each respondent. The larger value of CSperwpd, the more clean energy supply/demand,

and the lower the tailpipe emissions, in the respondents’ local neighborhood.30 Next, we create

an interaction term between roadnoise1km and CSperwpd. This interaction term disentangles the

impact of air pollution (as approximated by local clean energy usage), conditional on the ambient

noise level.

We report our results in columns 1 and 2 of Table 4 (see Appendix Table A.7 for the full spec-

ifications). We find that the additional control for concomitant air pollution does not have any

statistically significant effect on respondents’ mental health, conditional on PM2.5 concentrations,

and either way of measuring traffic-generated CO2 emissions, and the negative effect of road noise

on mental health is still significant at the 5% level.

29The Alternative Fueling Stations dataset is updated daily by the National Renewable Energy Laboratory
(NREL) and we accessed it on May 2nd, 2023. Unfortunately, we do not have the historical location of clean
energy stations and there were probably far fewer clean energy stations during the early waves of the HINTS
data that we use. Thus, by assigning clean energy fueling stations to locations where there were none, we
obtain a lower bound, but possibly biased, estimate of the causal effect of noise on mental health. For data
details, refer to https://afdc.energy.gov/stations/#/find/nearest.

30The mean of CSperwpd is 0.0073 with a standard deviation of 0.0154. The 50%, 75%, 90%, and 95%
percentiles are 0.0045, 0.0089, 0.0162, and 0.0230, respectively.
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5.3 Sub-sample of Hearing Impaired Respondents

HINTS includes a question on hearing impairment: “Are you deaf or do you have serious difficulty

hearing?” Approximately 7%-9% of all respondents answered “Yes” to this question across the

five waves. We run a “placebo test” by comparing the results for a group of respondents who are

hearing impaired with those who are not. The 2SLS results are shown in Table 5 (see Appendix

Table A.8 for the full specifications). The sample size is much smaller for the group of respondents

who are hearing impaired, and since these respondents may have unobservable characteristics that

are correlated with mental health, we are cautious to ascribe causality to the estimates from this

model. Still, it is notable that there is no significant effect of ambient noise on the mental health of

the hearing-impaired respondents whereas there is a negative and statistically significant effect

of ambient road noise on mental health for those without any hearing impairment.31 We should

also note that while hearing-impaired respondents are immune to the effects of ambient noise,

they receive the same effects of air pollution as non-hearing-impaired respondents, though the

coefficient is not significant for the hearing-impaired sample. The comparison between these two

sub-samples reinforces our argument that the effect of ambient noise is independent of air pollution.

To account for systematic differences in the spatial distribution of the hearing-impaired respondents

from other respondents, we extract another sub-sample of hearing-impaired and non-impaired

respondents from the counties where the hearing-impaired respondents reside by survey year (see

column 4 of Table 5). We find a significantly negative (at 5%) effect of road noise on mental health

for this sub-sample of respondents allaying fears that the lack of statistical significance for the

sub-sample of hearing-impaired respondents is driven by geographically correlated unobservables.

Finally, we also extract a sub-sample of senior citizens (60+ years) from the general sample without

any hearing impairment. While this group of respondents does not report hearing impairment, the

National Institute on Aging reports that nearly one third of older adults have hearing loss and that

many older adults are unaware or don’t want to admit that they have a problem with hearing. We

31Note that the number of observations in columns 1 and 2 of Table 5 does not add up to our full sample
size of 14,033 because the question on hearing impairment is not surveyed in 2014.
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do not find road noise has a significantly negative effect on these respondents’ mental health (see

column 3 of Table 5).

6 Noise, Sleep Deprivation and Mental Health

In this section, we focus on the association between roadway noise pollution and sleep duration in

an attempt to identify a potential channel through which ambient roadway noise has a deleterious

effect on mental health. There is evidence in the epidemiology literature that the deleterious effect

of noise works mainly through the activation of the hypothalamic pituitary adrenal (HPA) axis in

the brain (Hoffmann, 2018), which is a significant part of the human central stress response system.

The activation of the HPA axis can contribute to sleep disturbance and lead to the release of stress

hormones (Argys et al., 2020).

In the HINTS surveys, respondents were asked the following questions in three waves (2011, 2012,

and 2013): “How much sleep do you usually get on a workday or school day (i.e., weekday)? Hours

& Minutes”; “How much sleep do you usually get on a non-work or non-school day (i.e., weekend)?

Hours & Minutes”. We use the answers to these questions to calculate the daily average sleep within

a week for every respondent from these three waves. However, the 5-digit/9-digit residential zip

code information is not available for the three waves with sleep data. We are restricted to utilizing

the average county-level noise pollution from the available three waves (2016, 2018, and 2020) as

an approximation.32 We also include some individual-level demographic information that could be

correlated with sleep duration. Liu et al. (2020) report that air pollutants are negatively associated

with sleep health and we control for county-level average traffic generated CO2 emissions and

PM2.5 concentrations to approximate air pollutants. The reduced-form specification for individual

32We reiterate that noise pollution is a very local pollution source, so there might be some measurement
errors when we utilize the average noise exposure in a relatively large area.
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i residing in county c in survey year t is as follows:

Avgsleepict = β0 +γ1Roadnoisect +γ2CO2Emissionct +γ3PM2.5Concentrationct

+β1Femaleict +β2Urbanict + β3Marriedict

+β4Ageict + β5Age
2
ict +β6Educict + β7Hhnumict +β8Raceict +β9Incomeict

+λ1DocV isict +λ2Cancerict +λ3CancerFamict

+λ4BMIict +λ5Exerciseict +λ6Ownict + ϵict

(4)

We keep most of the individual-level variables from Eq.(1) though information on some health

conditions is not available in these three waves (e.g. whether the respondent suffers from diabetes

and hypertension). However, information about whether a respondent owns their current residence

is available in these three waves, so we are able to include it at an individual level instead of the

block group level.

The estimated coefficients from Eq.(4) fit our intuition and expectations well (see Table 6). We

find that respondents with higher education levels, larger households, higher BMI values, and

older respondents, have significantly less sleep whereas female and married respondents have

significantly more sleep (see Appendix Table A.9 for the full specification).

Most notably, we find that average road noise in the county has a significantly negative impact

on respondents’ sleep duration which is reduced by around 25 minutes when the ambient road

noise increases by 10 dB.33 We also find that average traffic-generated CO2 emissions and PM2.5

concentrations are negatively associated with sleep duration, but the estimates are not statistically

significant.

330.041× 60× 10 = 25 minutes.
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7 Conclusion

It is well established that the human stress response system is triggered by non-chemcial stimulants

such as light and noise (Jariwala et al., 2017, Kumar et al., 2019). The resulting release of stress

hormones can cause fragmentation and disruption of sleep, increase oxidative stress in the vascula-

ture and brain, and ultimately affect mental health (Münzel et al., 2021). The US is singular among

developed nations in terms of its high rates of mental health disease. At the same time, the US is

also characterized by one of the highest rates of private vehicle ownership and the most extensive

network of roadways. Not surprisingly, the regulation of noise pollution has emerged as a policy

goal in recent years. The Quiet Communities Act of 2021, which was introduced in the US House

of Representatives in June 2021, requires the EPA to reestablish the Office of Noise Abatement

and Control to assist in the development of local noise control programs, research, and education.

Also, the extensive use of personal vehicles contributes to frequent traffic congestion in large cities.

However, the lack of high-frequency noise and congestion data at a national level means that the

effect of ambient road noise from traffic congestion (e.g. vehicle horns) and its deleterious effects

on human health is understudied and remains a gap in the literature. Until policymakers at the

EPA/DoT gather and report the necessary data, we cannot answer these questions at a granular

level.

Nonetheless, recognizing the importance of ambient roadway noise and the need for innovative

policy, we focus on general vehicular noise from major roadways and its potential role as a con-

tributing factor to the high incidence of mental health issues in the US. We exploit variations in

topography, daily wind conditions, and annual average temperature to extract exogenous variation

in ambient roadway noise. We find robust causal evidence of the negative effects of road noise on

the mental health of about 14,000 respondents surveyed by the NCI, conditional on the effects of

co-generated vehicular air pollution.

Zou (2017) argues that low-frequency noise from wind farms may be the driving factor behind

increasing suicide rates observed near wind farms and Hener (2022) finds noise pollution increases

32



local crime rates. Similarly, Boes and Nüesch (2011) demonstrate that aircraft noise reduces apart-

ment rents, reflecting residents’ willingness to pay to avoid noise-related disturbances, while Pope

(2008) highlights that information disclosure about airport noise leads to stronger depreciation in

property values, revealing the significant perceived disamenity of noise. Von Graevenitz (2018)

further quantifies the amenity cost of road noise, showing its substantial negative impact on hous-

ing markets. Our findings in this study point to the bottom line of these stories. If noise pollution

drives behavioral changes, such as avoidance in the housing market, engagement in criminal

activities, or even suicide, these behaviors can likely be explained by noise-induced changes in

mental health. By demonstrating the first-level effects of noise pollution on mental well-being,

our study provides a consistent and complementary perspective to these earlier findings, linking

environmental noise to broader social and behavioral outcomes.

Although the deleterious effect of roadway noise pollution on mental health that we find is relatively

mild, even mild deterioration in mental health can contribute to large penalties in the labor market.

Germinario et al. (2022) find that respondents’ earnings decrease by 16%-18% and the employment

rate decreases by at most 4% when going from having “no” to “little” or “little” to “mild” depressive

symptoms. The Federal Reserve reports that the total wages and salaries in the US are 9720.96

billion dollars in 2021. Our findings suggest that around 18 out of 2528 respondents (in the survey

year 2018) may go from having “little” to “mild” depressive symptoms because of each decibel

increase in ambient road noise. Using Germinario et al. (2022)’s estimates, this is equivalent to

an 11.35-12.77 billion dollar (in 2021 dollars) loss in welfare.34 Similarly, Peng et al. (2016) find

the presence of mild (the most severe) depressive symptoms (relative to no depressive symptoms)

increases work loss days by 1.9 (4.5) days and contributes to an annual total cost of workplace

absenteeism ranging from 0.9-1.9 billion dollars (in 2009 dollars). Our back-of-the-envelope

calculation implies the potential labor market penalties from the deleterious effect of ambient

roadway noise could be even larger than those from workplace absenteeism. As the US focuses on

(re)building its highway infrastructure, this potential welfare cost due to roadway noise should

349720.96×0.73%×16%(18%) = 11.35(12.77). 0.73% is calculated as 18/2528, see Appendix Table A.1
Panel B.
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drive co-investment in noise abatement strategies such as required noise insulation in new and

retrofitted homes and minimum setbacks from major roadways. Likewise, major urban areas might

take a cue from New York City’s Department of Environmental Protection which recently installed

“noise cameras” to detect and ticket vehicles generating noise above 85 dB (Nolan, 2023).
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Figures

Figure 1: Binghamton University Noise Map
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Figure 2: Noise Buffers for Hypothetical HINTS Respondents
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https://www.ers.usda.gov/data-products/area-and-road-ruggedness-scales/documentation/

Figure 3: Terrain Ruggedness Index Computation
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Figure 4: Ambient Road Noise Distribution
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Tables

Table 1: Descriptive Statistics

Mean SD

Demographics

Age (years) 55.19 16.51
Female (percentage) 0.58 0.49
Married (percentage) 0.51 0.50
White (percentage) 0.63 0.48
Hispanic (percentage) 0.15 0.36
Black (percentage) 0.14 0.35
Other race (percentage) 0.08 0.27
Own house (percentage)35 0.55 0.25
Household size (number of people) 2.43 1.45
College graduate (percentage) 0.28 0.45
Income ($50K-$75K) (percentage) 0.18 0.38

Mental health index

PHQ-4 (raw index) 1.90 2.79
PHQ-4 (standardized) -0.0045 0.99

Health indices

Exercise (days/week) 2.75 2.24
BMI 28.44 6.59
Diabetes (percentage) 0.20 0.40
Hypertension (percentage) 0.43 0.50
Had cancer (percentage) 0.15 0.36
Family had cancer (percentage) 0.56 0.50

Environmental factors

Zip-5 Annual average temp (◦F) 60.13 8.46
Zip-5 During-survey cloud cover (%) 44.91 12.55
Zip-5 During-survey solar energy (MJ/m2) 15.16 4.14
Zip-9 CO2 emissions (Kton/year) 4.99 9.61
Zip-9 PM2.5 concentration (µg/m3) 7.65 1.76

Note: N=14,643

35It measures the fraction of people in the respondents’ block group who own their residence.
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Table 2: OLS/2SLS Results

Dependent variable:

Standardized mental health index

OLS IV Approach
Panel A: Air pollution within 1 km (1) (2) (3) (4)

Road noise 0.0016∗∗ 0.0026∗∗ 0.0077∗ 0.0117∗

(0.0008) (0.0012) (0.0045) (0.0067)
CO2 emission 0.0002 0.0042 0.0110 0.0103

(0.0009) (0.0033) (0.0085) (0.0129)
PM2.5 concentration -0.0022 0.0033 -0.0371 -0.0318

(0.0093) (0.0142) (0.0277) (0.0365)

Panel B: Air pollution within 5 km

Road noise 0.0016∗ 0.0025∗∗ 0.0077∗ 0.0121∗

(0.0008) (0.0012) (0.0044) (0.0065)
CO2 emission 0.0019 0.0120∗∗ 0.0134 0.0115

(0.0023) (0.0053) (0.0095) (0.0118)
PM2.5 concentration -0.0032 -0.0042 -0.0347 -0.0320

(0.0098) (0.0144) (0.0270) (0.0349)

Control Variables

Demographics X∗∗∗ X∗∗∗ X∗∗∗ X∗∗∗

Health indices X∗∗∗ X∗∗∗ X∗∗∗ X∗∗∗

Weather X X X X

Instrument Variables

County × wind direction X
State × wind direction X
Census Division × wind direction X
Other instruments X X X

County FE X X X X
Year FE X X X X
R2 (Panel A) 0.198 0.122 0.108 0.101
R2 (Panel B) 0.198 0.123 0.118 0.110
Observations36 14,033 14,033 14,033 14,033

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Road noise refers to the ambient roadway noise in the 1km buffer surrounding the centroid of each

respondent’s 9-digit zip code area. We also report the joint significance test (F-test) for control variables

(i.e. ∗∗∗ on Demographics, Health Indices, etc.). Other Instruments include area ruggedness index, road

ruggedness index, annual average temperature, wind speed, and maximum wind speed. Note that a higher

value for the standardized mental health index indicates worse mental health.

36There are 610 counties with only one observation each and we exclude them in our model with county
fixed effect.
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Table 3: Alternative Point Noise Measurement: 2SLS Estimates

Dependent variable:

Standardized mental health index

(1)

Road noise −0.00015
(0.0009)

CO2 emission 1km 0.0052
(0.0033)

PM2.5 concentration 1 km 0.0057
(0.0141)

Demographics X∗∗∗

Health Indices X∗∗∗

Weather X
County FE X
Year FE X
R2 0.122
Observations 14,033

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Ambient noise is measured at the zip-9 centroid from each respondent’s residence. We also report the joint

significance test (F-test) for control variables (i.e. ∗∗∗ on Demographics, Health Indices, etc.). Note that a

higher value for the standardized mental health index indicates worse mental health.
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Table 4: Robustness Check for Confounding Air Pollution: 2SLS Estimates

Dependent variable:

Standardized mental health index

(1) (2)

Road noise 0.0027∗∗ 0.0026∗∗

(0.0012) (0.0012)
CO2 emission 1km 0.0043

(0.0033)
CO2 emission 5km 0.0122∗∗

(0.0053)
PM2.5 concentration 1km 0.0032

(0.0142)
PM2.5 concentration 5km -0.0044

(0.0144)
CSwpd×Road noise -0.0083 -0.0095

(0.0171) (0.0170)

Demographics X∗∗∗ X∗∗∗

Health Indices X∗∗∗ X∗∗∗

Weather X X
County FE X X
Year FE X X
R2 0.122 0.123
Observations 14,033 14,033

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We also report the joint significance test (F-test) for control variables (i.e. ∗∗∗ on Demographics, Health

Indices, etc.). Note that a higher value for the standardized mental health index indicates worse mental

health.
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Table 5: Hearing impaired/Non-hearing impaired Sub-sample: 2SLS Estimates

Dependent variable:

Standardized mental health index

HI NHI ENHI Comparable sample

(1) (2) (3) (4)

Road noise −0.0033 0.0023∗ 0.0021 0.0044∗∗

(0.0076) (0.0013) (0.0018) (0.0020)
CO2 emission 1km 0.0026 0.0061∗ 0.0007 0.0044

(0.0071) (0.0032) (0.0038) (0.0040)
PM2.5 concentration 1km 0.0221 −0.0003 −0.0183 0.0106

(0.0647) (0.0160) (0.0238) (0.0169)

Demographics X∗∗∗ X∗∗∗ X∗∗∗ X∗∗∗

Health Indices X∗∗∗ X∗∗∗ X∗∗∗ X∗∗∗

Weather X X X X
County FE X X X X
Year FE X X X X
R2 0.159 0.121 0.100 0.117
Observations 583 10,469 3,906 10,690

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The headings HI, NHI, and ENHI represent hearing impaired, non-hearing impaired, and elderly non-

hearing impaired, respectively. Column 4 consists of another sub-sample of hearing-impaired and

non-impaired respondents from the counties where the hearing-impaired respondents reside by survey

year. We also report the joint significance test (F-test) for control variables (i.e. ∗∗∗ on Demographics,

Health Indices, etc.). Note that a higher value for the standardized mental health index indicates worse

mental health.

51



Table 6: Sleep Duration and Noise

Dependent variable:

Average sleep hours

Average road noise −0.041∗

(0.021)
Average CO2 emission −0.0014

(0.0067)
Average PM2.5 concentration −0.0061

(0.0097)
Constant 11.215∗∗∗

(1.152)

Demographics X∗∗∗

Health Indices X∗∗∗

City Level X
Housing Ownership X
R2 0.036
Observations 8,628

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We also report the joint significance test (F-test) for control variables (i.e. ∗∗∗ on Demographics, Health

Indices, etc.).
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For Online Publication

Appendix

A Figures

Figure A.1: DoT National Noise Map 2020
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Figure A.2: CO2 Emission Map
Note: We show the 2017 CO2 emission map for New York City and its surrounding areas
for brevity. The cells with a darker shade of red represent more traffic-generated CO2 emis-
sions. Notably, areas with detectable traffic-related CO2 emissions tend to be fairly close to the
highways.
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(a) Road Noise and Income (b) Road Noise and Education

Figure A.3: Road Noise across Income/Education Levels
Note: These are the estimated coefficients and their 95% CIs from the auxiliary regression
of respondents’ ambient road noise within the 1-km buffer on their income/education range
indicators.
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(a) Wind Speed v.s. Income (b) Wind Speed v.s. Education

Note: These are the estimated coefficients and their 95% CIs from the auxiliary regression of
average wind speed on income/education range indicators.

Figure A.4: IV Balance Test for Wind Speed

56



(a) Maximum Wind Speed v.s. Income (b) Maximum Wind Speed v.s. Education

Note: These are the estimated coefficients and their 95% CIs from the auxiliary regression of
maximum wind speed on income/education range indicators.

Figure A.5: IV Balance Test for Maximum Wind Speed
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(a) Temperature v.s. Income (b) Temperature v.s. Education

Note: These are the estimated coefficients and their 95% CIs from the auxiliary regression of
annual average temperature on income/education range indicators. However, the temperature
instrument tends to be negatively correlated with respondents’ income and education. We believe
there are two main reasons for this. First, the fraction of people living in the relatively cool
northern US and northern California is increasing with income (see Figure A.7 (a)). Second, the
fraction of white people is increasing with income levels (see Figure A.7 (b)). People of color,
especially Hispanics and blacks, who tend to be less educated and with lower incomes (compared
to whites), are more likely to live in southern areas and hotter areas (e.g. TX, FL, and southern
CA). Once we condition on age, race, and gender, the temperature instrument is almost mean
independent of income and education (see Figure A.8).

Figure A.6: IV Balance Test for Temperature

58



(a) The Fraction of Respondents in the Northern U.S across Income Levels (b) The Fraction of White Respondents across Income Levels

Figure A.7: Respondents’ Distribution across Areas and Income Levels
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(a) Temperature v.s. Income (b) Temperature v.s. Education

Note: These are the estimated coefficients and their 95% CIs from the auxiliary regression of
respondents’ annual average temperature on their income/education range indicators and three
exogenous control variables (gender, age, and race).

Figure A.8: IV Balance Test for Temperature
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(a) Area Ruggedness v.s. Income (b) Area Ruggedness v.s. Education

Note: These are the estimated coefficients and their 95% CIs from the auxiliary regression
of respondents’ area ruggedness index on their income/education range indicators and three
exogenous control variables (gender, age, and race), conditional on city levels. In Figures A.9 and
A.10, we find that even after conditioning on three exogenous variables (age, gender, race) and
city-level fixed effects, the people with the highest income levels and education levels still tend
to live in areas with higher Area and Road Ruggedness Index. However, we have no intuitive
reason to believe that ruggedness will affect respondents’ mental health through the channel of
income or education.

Figure A.9: IV Balance Test for Area Ruggedness
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(a) Road Ruggedness v.s. Income (b) Road Ruggedness v.s. Education

Note: These are the estimated coefficients and their 95% CIs from the auxiliary regression
of respondents’ road ruggedness index on their income/education range indicators and three
exogenous control variables (gender, age, and race), conditional on city levels. In Figures A.9 and
A.10, we find that even after conditioning on three exogenous variables (age, gender, race) and
city-level fixed effects, the people with the highest income levels and education levels still tend
to live in areas with higher Area and Road Ruggedness Index. However, we have no intuitive
reason to believe that ruggedness will affect respondents’ mental health through the channel of
income or education.

Figure A.10: IV Balance Test for Road Ruggedness
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B Tables

Table A.1: Income and Mental Health Distribution

Panel A: Income

Income Ranges Freq. Percent

$0 to $19,999 2,537 17.32
$20,000 to $34,999 1,874 12.80
$35,000 to $49,999 1,943 13.27
$50,000 to $74,999 2,633 17.98
$75,000 to $99,999 1,870 12.77
$100,000 or more 3,786 25.86

Total (Whole Sample) 14,643 100.00

Panel B: Mental Health

Raw PHQ-4 Index Standardized PHQ-4 Index Freq. Percent

0 -0.665 1,265 50.04
1 -0.307 315 12.46
2 0.051 285 11.27
3 0.408 142 5.62
4 0.766 200 7.91
5 1.124 67 2.65
6 1.481 41 1.62
7 1.839 48 1.90
8 2.197 42 1.66
9 2.554 32 1.27
10 2.912 29 1.15
11 3.270 22 0.87
12 3.627 40 1.58

Total (2018 Sub-sample) 2,528 100.00
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Table A.2: Full Model Specifications

Dependent variable:

Standardized mental health index

OLS IV Approach

(1) (2) (3)

educ12 −0.056∗ −0.054∗ −0.054∗

(0.030) (0.030) (0.030)
educsomecollege −0.040 −0.038 −0.038

(0.029) (0.029) (0.029)
educcollege −0.092∗∗∗ −0.088∗∗∗ −0.090∗∗∗

(0.029) (0.029) (0.029)
educpostgrad −0.116∗∗∗ −0.112∗∗∗ −0.116∗∗∗

(0.032) (0.032) (0.032)
female 0.079∗∗∗ 0.079∗∗∗ 0.078∗∗∗

(0.017) (0.017) (0.017)
married −0.149∗∗∗ −0.146∗∗∗ −0.146∗∗∗

(0.019) (0.020) (0.020)
totalhousehold 0.002 0.003 0.003

(0.007) (0.007) (0.007)
age −0.007∗∗ −0.007∗∗ −0.007∗∗

(0.003) (0.003) (0.003)
age2 −0.00005∗ −0.00005∗ −0.00005∗∗

(0.00003) (0.00003) (0.00003)
black −0.228∗∗∗ −0.229∗∗∗ −0.232∗∗∗

(0.027) (0.027) (0.027)
hispanic −0.052∗ −0.057∗∗ −0.057∗∗

(0.027) (0.027) (0.027)
otherrace −0.017 −0.021 −0.019

(0.032) (0.032) (0.032)
everhadcancer 0.022 0.022 0.023

(0.024) (0.024) (0.024)
familyeverhadcancer 0.066∗∗∗ 0.065∗∗∗ 0.064∗∗∗

(0.020) (0.020) (0.020)
income34999 −0.258∗∗∗ −0.259∗∗∗ −0.256∗∗∗

(0.030) (0.030) (0.030)
income49999 −0.332∗∗∗ −0.333∗∗∗ −0.330∗∗∗

(0.031) (0.031) (0.031)
income74999 −0.405∗∗∗ −0.406∗∗∗ −0.403∗∗∗

(0.029) (0.029) (0.030)
income99999 −0.454∗∗∗ −0.454∗∗∗ −0.451∗∗∗

(0.033) (0.033) (0.033)
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Dependent variable:

Standardized mental health index

OLS IV Approach

incomehigh −0.483∗∗∗ −0.482∗∗∗ −0.479∗∗∗

(0.031) (0.031) (0.031)
freqgoprovider 0.038∗∗∗ 0.038∗∗∗ 0.038∗∗∗

(0.003) (0.003) (0.003)
timesmoderateexercise −0.043∗∗∗ −0.043∗∗∗ −0.043∗∗∗

(0.004) (0.004) (0.004)
bmi 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001)
diabetes 0.146∗∗∗ 0.147∗∗∗ 0.146∗∗∗

(0.022) (0.022) (0.022)
hypertension 0.089∗∗∗ 0.088∗∗∗ 0.088∗∗∗

(0.019) (0.019) (0.019)
ownfraction −0.165∗∗∗ −0.139∗∗∗ −0.117∗∗∗

(0.036) (0.039) (0.040))
surveyicyday −0.0003 −0.0003 −0.0002

(0.002) (0.002) (0.002)
surveyhotday 0.0017∗ 0.0017∗ 0.0017∗

(0.0010) (0.0010) (0.0010)
surveycloudcover 0.0036∗∗ 0.0032∗∗ 0.0025

(0.0015) (0.0015) (0.0016)
surveysolarenergy 0.0006 0.0003 0.0002

(0.003) (0.003) (0.003)
roadnoise1km 0.0016∗∗ 0.0026∗∗ 0.0025∗∗

(0.0008) (0.0012) (0.0012)
CO2 emission1km 0.0002 0.0042

(0.0009) (0.0033)
CO2 emission5km 0.0120∗∗

(0.0053)
PM2.5 concentration1km -0.0022 0.0033

(0.0093) (0.0142)
PM2.5 concentration5km -0.0042

(0.0144)
Constant 0.587∗∗∗

(0.157)

County FE X X X
Year FE X X X
R2 0.198 0.122 0.123
Observations 14,033 14,033 14,033

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.3: First Stage Results

Dependent variable: Road noise
Panel A (1) (2) (3)

Windspeed 0.303∗∗ 0.423∗∗∗ 0.346∗∗∗

(0.128) (0.117) (0.114)
Windspeed Maximum -0.061 -0.115∗ -0.099

(0.079) (0.069) (0.066)
Averagetemp 0.264∗∗∗ 0.170∗ 0.174

(0.094) (0.089) (0.087)
RoadTRI 0.189∗∗∗ 0.237∗∗∗ 0.233∗∗∗

(0.022) (0.023) (0.023)
AreaTRI -0.165∗∗∗ -0.211∗∗∗ -0.210∗∗∗

(0.015) (0.016) (0.015)

F Statistic 3.73 3.87 7.65
R2 0.612 0.303 0.291
County × wind direction X
State × wind direction X
Census Division × wind direction X

Dependent variable: CO2 Emission

1km Buffer 5km Buffer

Panel B (1) (2) (3) (4) (5) (6)

Windspeed 0.145 -0.060 -0.063 0.097∗ -0.059 -0.088
(0.152) (0.107) (0.103) (0.054) (0.040) (0.038)

Windspeed Maximum -0.108 -0.022 -0.0005 -0.113∗∗∗ 0.002 0.023
(0.094) (0.063) (0.060) (0.033) (0.023) (0.022)

Averagetemp 0.394∗∗∗ 0.308∗∗∗ 0.310∗∗∗ 0.399∗∗∗ 0.335∗∗∗ 0.331∗∗∗

(0.111) (0.081) (0.079) (0.039) (0.030) (0.029)
RoadTRI 0.066∗∗ 0.073∗∗∗ 0.076∗∗∗ 0.074∗∗∗ 0.073∗∗∗ 0.073∗∗∗

(0.026) (0.021) (0.021) (0.009) (0.008) (0.008)
AreaTRI -0.062∗∗∗ -0.063∗∗∗ -0.064∗∗∗ -0.059∗∗∗ -0.058∗∗∗ -0.059∗∗∗

(0.018) (0.014) (0.014) (0.006) (0.005) (0.005)

F Statistic 0.48 3.43 8.87 1.64 14.30 37.29
R2 0.232 0.183 0.178 0.651 0.596 0.587
County × wind direction X X
State × wind direction X X
Census Division × wind direction X X

Dependent variable: PM2.5

1km Buffer 5km Buffer

Panel C (1) (2) (3) (4) (5) (6)

Windspeed -0.035∗∗∗ -0.046∗∗∗ -0.042∗∗∗ -0.024∗∗ -0.037∗∗∗ -0.032∗∗∗

(0.011) (0.010) (0.009) (0.010) (0.009) (0.009)
Windspeed Maximum -0.146∗∗∗ -0.090∗∗∗ -0.082∗∗∗ -0.153∗∗∗ -0.096∗∗∗ -0.088∗∗∗

(0.007) (0.006) (0.005) (0.006) (0.005) (0.005)
Averagetemp 0.035∗∗∗ 0.037∗∗∗ 0.028∗∗∗ 0.034∗∗∗ 0.042∗∗∗ 0.032∗∗∗

(0.008) (0.007) (0.007) (0.008) (0.007) (0.007)
RoadTRI 0.005∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.007∗∗∗ 0.006∗∗∗ 0.007∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
AreaTRI -0.012∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.013∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

F Statistic 3.36 12.18 23.68 3.89 14.48 28.50
R2 0.871 0.801 0.791 0.889 0.822 0.811
County × wind direction X X
State × wind direction X X
Census Division × wind direction X X

All regressions include county and year fixed effects with observations of 14,033. For brevity, we
do not report the first stage results for the wind direction×geographic area terms. The first-stage
F-values of columns (1) and (4) are small which is expected given the large number of
instruments relative to the sample size when we interact wind directions with counties. We also
observe that F-values increase when we use larger geographic areas to interact with wind
directions.
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Table A.4: First Stage Results without Wind-related Instruments

Dependent variable:

Road noise CO2 emission 1km PM2.5 concentration 1km

(1) (2) (3)

Averagetemp: 0.197∗∗ 0.345∗∗∗ 0.015∗∗∗

(0.084) (0.076) (0.007)
RoadTRI: 0.232∗∗∗ 0.079∗∗∗ 0.007∗∗∗

(0.023) (0.021) (0.002)
AreaTRI: -0.212∗∗∗ -0.068∗∗∗ -0.013∗∗∗

(0.015) (0.014) (0.001)

F Statistic 69.31 15.22 68.08

County FE X X X
Year FE X X X
R2 0.288 0.177 0.794
Observations 14,033 14,033 14,033

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.5: Robustness Check: 2SLS Estimates with Ruggedness and Average Temperature
Instruments (without Wind-related Instruments)

Dependent variable:

Standardized mental health index

(1)

educ12 −0.046
(0.036)

educsomecollege −0.032
(0.033)

educcollege −0.076
(0.036)

educpostgrad −0.113∗∗∗

(0.044)
female 0.069∗∗∗

(0.020)
married −0.128∗∗∗

(0.024)
totalhousehold 0.002

(0.008)
age −0.007

(0.004)
age2 −0.00005∗

(0.00003)
black −0.231∗∗∗

(0.030)
hispanic −0.024

(0.042)
otherrace −0.025

(0.039)
everhadcancer 0.030

(0.028)
familyeverhadcancer 0.056∗∗

(0.022)
income34999 −0.274∗∗∗

(0.034)
income49999 −0.329∗∗∗

(0.034) )
income74999 −0.423∗∗∗

(0.033)
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Dependent variable:

Standardized mental health index

income99999 −0.462∗∗∗

(0.036)
incomehigh −0.468∗∗∗

(0.035)
freqgoprovider 0.037∗∗∗

(0.004)
timesmoderateexercise −0.043∗∗∗

(0.004)
bmi 0.004∗∗∗

(0.002)
diabetes 0.140∗∗∗

(0.025)
hypertension 0.087∗∗∗

(0.022)
ownfraction −0.088

(0.132)
surveyicyday 0.004

(0.003)
surveyhotday 0.002

(0.001)
surveycloudcover 0.005∗

(0.003)
surveysolarenergy 0.005

(0.005)
roadnoise1km 0.036∗∗

(0.018)
CO2 emission1km −0.0010

(0.030)
PM2.5 concentration1km −0.263

(0.165)

County FE X
Year FE X
R2 −0.05
Observations 14,033

Note: +p<0.2; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.6: Alternative Point Noise Measurement: 2SLS Estimates with Full Model Specifi-
cations

Dependent variable:

Standardized mental health index

(1)

educ12 −0.054∗

(0.030)
educsomecollege −0.039

(0.029)
educcollege −0.089∗∗∗

(0.029)
educpostgrad −0.111∗∗∗

(0.032)
female 0.080∗∗∗

(0.017)
married −0.148∗∗∗

(0.020)
totalhousehold 0.003

(0.007)
age −0.007∗∗

(0.003)
age2 −0.00005∗

(0.00003)
black −0.228∗∗∗

(0.027)
hispanic −0.056∗∗

(0.027)
otherrace −0.020

(0.032)
everhadcancer 0.023

(0.024)
familyeverhadcancer 0.065∗∗∗

(0.020)
income34999 −0.258∗∗∗

(0.030)
income49999 −0.333∗∗∗

(0.031) )
income74999 −0.406∗∗∗

(0.030)
income99999 −0.454∗∗∗

(0.033)
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Dependent variable:

Standardized mental health index

incomehigh −0.483∗∗∗

(0.031)
freqgoprovider 0.038∗∗∗

(0.003)
timesmoderateexercise −0.043∗∗∗

(0.004)
bmi 0.005∗∗∗

(0.001)
diabetes 0.147∗∗∗

(0.022)
hypertension 0.088∗∗∗

(0.019)
ownfraction −0.143∗∗∗

(0.040))
surveyicyday −0.0003

(0.002)
surveyhotday 0.0017∗

(0.0010)
surveycloudcover 0.0032∗∗

(0.0015)
surveysolarenergy 0.0002

(0.003)
roadnoise1km -0.00015

(0.0009)
CO2 emission1km 0.0052

(0.0033)
PM2.5 concentration1km 0.0057

(0.0141)

County FE X
Year FE X
R2 0.122
Observations 14,033

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.7: Robustness Check for Confounding Air Pollution: 2SLS Estimates with Full
Model Specifications

Dependent variable:

Standardized mental health index

(1) (2)

educ12 −0.055∗ −0.055∗

(0.030) (0.030)
educsomecollege −0.039 −0.039

(0.029) (0.029)
educcollege −0.088∗∗∗ −0.090∗∗∗

(0.029) (0.029)
educpostgrad −0.112∗∗∗ −0.115∗∗∗

(0.032) (0.032)
female 0.079∗∗∗ 0.078∗∗∗

(0.017) (0.017)
married −0.146∗∗∗ −0.146∗∗∗

(0.020) (0.020)
totalhousehold 0.003 0.003

(0.007) (0.007)
age −0.007∗∗ −0.007∗∗

(0.003) (0.003)
age2 −0.00005∗ −0.00005∗∗

(0.00003) (0.00003)
black −0.230∗∗∗ −0.232∗∗∗

(0.027) (0.027)
hispanic −0.058∗∗ −0.057∗∗

(0.027) (0.027)
otherrace −0.021 −0.020

(0.032) (0.032)
everhadcancer 0.023 0.023

(0.024) (0.024)
familyeverhadcancer 0.065∗∗∗ 0.064∗∗∗

(0.020) (0.020)
income34999 −0.259∗∗∗ −0.256∗∗∗

(0.030) (0.030)
income49999 −0.332∗∗∗ −0.329∗∗∗

(0.031) (0.031)
income74999 −0.406∗∗∗ −0.403∗∗∗

(0.030) (0.030)
income99999 −0.454∗∗∗ −0.451∗∗∗

(0.033) (0.033)
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Dependent variable:

Standardized mental health index

(1) (2)

incomehigh −0.481∗∗∗ −0.479∗∗∗

(0.031) (0.031)
freqgoprovider 0.038∗∗∗ 0.038∗∗∗

(0.003) (0.003)
timesmoderateexercise −0.043∗∗∗ −0.043∗∗∗

(0.004) (0.004)
bmi 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001)
diabetes 0.146∗∗∗ 0.146∗∗∗

(0.022) (0.022)
hypertension 0.088∗∗∗ 0.089∗∗∗

(0.019) (0.019)
ownfraction −0.140∗∗∗ −0.119∗∗∗

(0.040) (0.041)
surveyicyday −0.0003 −0.0002

(0.0018) (0.0018)
surveyhotday 0.0017∗ 0.0017∗

(0.0010) (0.0010)
surveycloudcover 0.0032∗∗ 0.0025

(0.0015) (0.0016)
surveysolarenergy 0.0003 0.0002

(0.003) (0.003)
roadnoise1km 0.0027∗∗ 0.0026∗∗

(0.0012) (0.0012)
roadnoise1km×CSwpd -0.0083 -0.0095

(0.0171) (0.0170)
CO2 emission1km 0.0043

(0.0033)
CO2 emission5km 0.0122∗∗

(0.0053)
PM2.5 concentration1km 0.0032

(0.0142)
PM2.5 concentration5km -0.0044

(0.0144)

County FE X X
Year FE X X
R2 0.122 0.123
Observations 14,033 14,033

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.8: Hearing impaired/Non-hearing impaired Sub-sample: 2SLS Estimates with
Full Model Specifications

Dependent variable:

Standardized mental health index

HI NHI ENHI Comparable sample

(1) (2) (3) (4)

educ12 −0.066 −0.054 −0.013 −0.065∗

(0.172) (0.036) (0.050) (0.035)
educsomecollege 0.080 −0.012 −0.002 −0.041

(0.167) (0.034) (0.048) (0.033)
educcollege −0.061 −0.080∗∗ −0.029 −0.100∗∗∗

(0.190) (0.034) (0.050) (0.033)
educpostgrad −0.210 −0.084∗∗ −0.066 −0.111∗∗∗

(0.201) (0.037) (0.052) (0.036)
female 0.034 0.094∗∗∗ 0.093∗∗∗ 0.087∗∗∗

(0.111) (0.020) (0.030) (0.019)
married −0.221∗ −0.150∗∗∗ −0.078∗∗∗ −0.135∗∗∗

(0.132) (0.023) (0.034) (0.022)
totalhousehold 0.035 −0.002 0.001 0.002

(0.052) (0.008) (0.014) (0.007)
age −0.064∗∗∗ −0.005 −0.048 −0.008∗∗

(0.024) (0.004) (0.033) (0.003)
age2 0.0004∗∗ −0.0001∗∗ 0.0003 −0.00004

(0.0002) (0.00003) (0.0002) (0.00003)
black −0.089 −0.232∗∗∗ −0.230∗∗∗ −0.241∗∗∗

(0.221) (0.031) (0.046) (0.030)
hispanic −0.035 −0.075∗∗ 0.006 −0.081∗∗∗

(0.160) (0.031) (0.052) (0.029)
otherrace 0.271 −0.040 −0.031 −0.023

(0.212) (0.036) (0.061) (0.034)
everhadcancer −0.034 0.012 0.017 0.013

(0.126) (0.028) (0.033) (0.027)
familyeverhadcancer 0.076 0.065∗∗∗ 0.051 0.069∗∗∗

(0.139) (0.024) (0.037) (0.023)
income34999 −0.038 −0.239∗∗∗ −0.342∗∗∗ −0.244∗∗∗

(0.174) (0.036) (0.050) (0.034)
income49999 −0.117 −0.289∗∗∗ −0.388∗∗∗ −0.315∗∗∗

(0.183) (0.036) (0.051) (0.035)
income74999 −0.027 −0.367∗∗∗ −0.380∗∗∗ −0.385∗∗∗

(0.183) (0.034) (0.050) (0.033)
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Dependent variable:

Standardized mental health index

HI NHI ENHI Comparable sample

(1) (2) (3) (4)

income99999 0.057 −0.408∗∗∗ −0.487∗∗∗ −0.434∗∗∗

(0.220) (0.038) (0.058) (0.037)
incomehigh −0.371∗ −0.442∗∗∗ −0.453∗∗∗ −0.461∗∗∗

(0.184) (0.036) (0.055) (0.035)
freqgoprovider 0.027 0.037∗∗∗ 0.030∗∗∗ 0.036∗∗∗

(0.017) (0.003) (0.005) (0.003)
timesmoderateexercise −0.015 −0.042∗∗∗ −0.038∗∗∗ −0.040∗∗∗

(0.023) (0.004) (0.006) (0.004)
bmi 0.013 0.005∗∗∗ −0.005∗∗ 0.006∗∗∗

(0.009) (0.002) (0.003) (0.002)
diabetes 0.159 0.127∗∗∗ 0.099∗∗∗ 0.116∗∗∗

(0.121) (0.026) (0.034) (0.025)
hypertension 0.215∗ 0.074∗∗∗ 0.027 0.118∗∗∗

(0.122) (0.022) (0.031) (0.022)
ownfraction −0.318 −0.135∗∗∗ −0.169∗∗∗ −0.167∗∗∗

(0.220) (0.044) (0.065) (0.045)
surveyicyday 0.010 −0.0006 0.0027 0.0012

(0.0147) (0.0023) (0.0038) (0.0022)
surveyhotday −0.0063 0.0007 0.0015 0.0021∗

(0.0065) (0.0013) (0.0020) (0.0011)
surveycloudcover −0.0014 0.0014 0.0050∗ 0.0022

(0.0106) (0.0019) (0.0029) (0.0017)
surveysolarenergy 0.0078 0.0024 −0.0034 0.0008

(0.0275) (0.0032) (0.0047) (0.0033)
Road noise −0.0033 0.0023∗ 0.0021 0.0044∗∗

(0.0076) (0.0013) (0.0018) (0.0020)
CO2 emission1km 0.0026 0.0061∗ 0.0007 0.0044

(0.0071) (0.0032) (0.0038) (0.0040)
PM2.5 concentration1km 0.0221 −0.0003 −0.0183 0.0106

(0.0647) (0.0160) (0.0238) (0.0169)

R2 0.159 0.121 0.100 0.117
Observations 583 10,469 3,906 10,690

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.9: Sleep Duration and Noise: Full Model Specification

Dependent variable:

Average sleep

educ12 −0.055
(0.050)

educsomecollege −0.155∗∗∗

(0.050)
educcollege −0.100∗∗

(0.051)
educpostgrad −0.044

(0.056)
female 0.117∗∗∗

(0.031)
married 0.122∗∗∗

(0.035)
totalhousehold −0.029∗∗∗

(0.009)
age −0.048∗∗∗

(0.005)
age2 0.0005∗∗∗

(0.00005)
black −0.076

(0.046)
hispanic 0.081∗

(0.047)
otherrace −0.163∗∗∗

(0.061)
bigcity −0.065

(0.055)
middlecity 0.017

(0.056)
smallcity −0.069

(0.063)
everhadcancer −0.052∗

(0.029)
familyeverhadcancer −0.058∗

(0.032)
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Dependent variable:

Average sleep

income34999 0.019
(0.048)

income49999 −0.046
(0.049)

income74999 −0.002
(0.049)

income99999 −0.025
(0.058)

incomehigh −0.049
(0.055)

freqgoprovider 0.005
(0.005)

timesmoderateexercise −0.003
(0.007)

bmi −0.011∗∗∗

(0.002)
own −0.027

(0.038)
avgroadnoise −0.041∗

(0.021)
avgCO2emission −0.001

(0.007)
avgPM2.5concentration −0.006

(0.010)
Constant 11.215∗∗∗

(1.152)

R2 0.036
Observations 8,628

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.10: Robustness Check using Raw Mental Health Index: 2SLS Estimates with Full
Model Specifications

Dependent variable:

Raw mental health index

(1) (2)

educ12 −0.153∗ −0.153∗

(0.086) (0.086)
educsomecollege −0.111 −0.110

(0.081) (0.081)
educcollege −0.250∗∗∗ −0.254∗∗∗

(0.082) (0.082)
educpostgrad −0.317∗∗∗ −0.327∗∗∗

(0.090) (0.090)
female 0.224∗∗∗ 0.221∗∗∗

(0.048) (0.048)
married −0.412∗∗∗ −0.411∗∗∗

(0.055) (0.055)
totalhousehold 0.008 0.009

(0.019) (0.019)
age −0.019∗∗ −0.018∗∗

(0.008) (0.008)
age2 −0.0001∗ −0.0002∗∗

(0.00008) (0.00008)
black −0.647∗∗∗ −0.653∗∗∗

(0.076) (0.076)
hispanic −0.159∗∗ −0.158∗∗

(0.075) (0.075)
otherrace −0.059 −0.055

(0.089) (0.089)
everhadcancer 0.065 0.065

(0.068) (0.068)
familyeverhadcancer 0.181∗∗∗ 0.179∗∗∗

(0.057) (0.057)
income34999 −0.732∗∗∗ −0.723∗∗∗

(0.086) (0.086)
income49999 −0.941∗∗∗ −0.933∗∗∗

(0.086) (0.087) )
income74999 −1.148∗∗∗ −1.140∗∗∗

(0.083) (0.083)
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Dependent variable:

Raw mental health index

(1) (2)

income99999 −1.285∗∗∗ −1.276∗∗∗

(0.093) (0.093)
incomehigh −1.361∗∗∗ −1.354∗∗∗

(0.088) (0.088)
freqgoprovider 0.107∗∗∗ 0.108∗∗∗

(0.008) (0.008)
timesmoderateexercise −0.120∗∗∗ −0.120∗∗∗

(0.011) (0.011)
bmi 0.013∗∗∗ 0.013∗∗∗

(0.004) (0.004)
diabetes 0.414∗∗∗ 0.413∗∗∗

(0.063) (0.063)
hypertension 0.249∗∗∗ 0.250∗∗∗

(0.055) (0.055)
ownfraction −0.393∗∗∗ −0.331∗∗∗

(0.111) (0.114)
surveyicyday −0.0007 −0.0004

(0.005) (0.005)
surveyhotday 0.0050∗ 0.0049∗

(0.0028) (0.0028)
surveycloudcover 0.0093∗∗ 0.0072

(0.004) (0.004)
surveysolarenergy 0.0006 0.0004

(0.009) (0.009)
roadnoise1km 0.0074∗∗ 0.0071∗∗

(0.0033) (0.0033)
CO2 emission1km 0.0115

(0.0093)
CO2 emission5km 0.0335∗∗

(0.0148)
PM2.5 concentration1km 0.0082

(0.040)
PM2.5 concentration5km −0.0131

(0.041)

County FE X X
Year FE X X
R2 0.123 0.123
Observations 14,033 14,033

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

79


	Introduction
	Data
	Identification Strategy
	Basic Model: OLS
	Instrumental Variable Approach

	Main Results
	Summary Statistics
	OLS Results
	IV Results

	Robustness Checks
	Measurement Error
	Potentially Confounding Traffic Related Air Pollution
	Sub-sample of Hearing Impaired Respondents

	Noise, Sleep Deprivation and Mental Health
	Conclusion
	Figures
	Tables

